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On the basis of rigorous kinetic theory, we consider the question of the 
effect of chemical reactions on thermal conductivity and diffusion fluxes 
in plasma of arbitrary composition with no magnetic fields under condi- 
tions of local chemical equilibrium. 

When there is a temperature gradient, the heat and mass fluxes arising in plas- 
ma depend to a considerable extent on the chemical reactions taking place under the 
existing conditions. The composition of the plasma and the nature of the chemical 
reactions are determined by the thermodynamic parameters and external fields. 

Over a wide range of temperatures and pressures, plasma is a multicomponent 
mixture consisting of molecules and atoms, positively and negatively charged ions 
(with single or multiple charges), and electrons. Chemical reactions of various 
kinds may take place in such plasma: dissociation reactions, reactions of electron 
and ion formation (positive and negative ions, atomic, molecular, or complex ions, 
with one, two, or more elementary charges), and also various kinds of recombination 
reactions. As a result of chemical reactions, additional fluxes of mass and energy 
are created in the gas mixture. The resulting effect depends on all the chemical 
reactions taking place under the existing conditions in the plasma. 

The literature contains some estimates for the contribution of chemical reac- 
tions to the thermal conductivity of plasma in certain special cases [1-5]. In [i- 
4] the calculations are carried out on the basis of elementary kinetic theory for 
plasma consisting of a single chemical element. In [5] rigorous kinetic theory is 
used for considering a plasma without external fields, which consists of atoms of 
different chemical elements, singly charged ions, and electrons, characterized by 
reactions of a single type: A $ A§ + e-. 

The case of a multicomponent mixture of nonionized gases has been investigated 
in [6]. 

The question of thermal conductivity and mass transfer in multicomponent plasma 
of arbitrary composition in which chemical reactions of various kinds (dissociations, 
ionizations of all degrees, and corresponding recombinations) are taking place is a 
matter of some practical interest. 

In the present paper we make use of rigorous kinetic theory to calculate the 
component of thermal conductivity ~r resulting from chemical reactions of various 
kinds in a multicomponent plasma of arbitrary composition under stationary condi- 
tions. We also calculate diffusion fluxes and gradients of kilogram-mole fractions 
of plasma components, taking account of the chemical reactions. The calculations are 
carrried out under the following assumptions: 

I) magnetic fields may be disregarded; 
2) the gradients of the pressure p are zero; 
3) there is local chemical equilibrium; 
4) thermal diffusion may be disregarded because it is an infinitesimal of 

higher order than ordinary diffusion; 
5) deviations from thermodynamic equilibrium are slight (this justifies the 

use of the Chapman-Enskog method for solving the kinetic equations). 
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In Sec. i we give the calculations for Xr and the vectors of the kilogram-mole 
fluxes Wa of the components (a = I, 2, ..., ~). 

In Sec. 2 we calculate the gradients of the kilogram-mole fractions of the com- 
ponents x a (a = !, 2, ..., ~). In Sec. 3 we consider the stationary case with no 
external fields. 

I. For given values of the thermodynamic parameters in a plasma:'bf known chem- 
ical composition there are a specific number ~ of independent reactions (~ < .): the 
equation for any of these reactions cannot be obtained as a linear combination of 
the equations of the other reactions. The equations for all the independent reac- 
tions can be written in the form of the following system: 

X ~-. ~ n~kX~ ( i - - l ,  2 . . . . .  ~). (1) 
k = ~ §  

The left sides of Eqs. (I) are the symbols of the components taking part in one re- 
action, while the right sides contain the symbols for those taking part in two or 
more reactions. It is therefore convenient to refer to the components with indices 
k(k = ~ + I, ~ + 2 .... , ~) as independent components, and to those with indices 
i(i = I, 2, ..., ~) as dependent components or reaction products. In particular, 
the chemical elements and the electron component may be regarded as independent com- 
ponents. Inert gases should also be considered independent components (i.e., in- 
cluded in the group of k-components), for which nik = 0 for all values of i. For 
reactions numbered i in which some k-component does not participate, we write nik = 
0. 

For example, for air at high temperatures the most important chemical reactions 
are the following [7, 8]: 

1) N~-~-2N; 2) O~_~--20; 3) N , ~ N + q  - e-; 

4) O ~ - O  + -~e-; 5) NO~-N6-  O; 5) NO~-,~--NO + + e - ;  

7) N 2 :- 0 2 ~ 2NO. 

However, in calculating the transfer coefficients for air in the relevant region of 
thermodynamic parameters, we cannot use the above system of equations for the chemi- 
cal reactions. The independent equations of the chemical reactions under considera- 
tion must be written in the following form: 

1) N , ~ 2 N ;  2) O~_~-20; 3) N - ~ - N - - e - ;  

4) O+~-~-O--e-; 5) NO-,~-N+O; 6) NO+~-,~-N-t-O--e -. 

This is because the Butler-Brokaw formula [6] can be extended to the case of a mul- 
ticomponent mixture in which there are simultaneous reactions of dissociation and 
ionization provided that the equations of the chemical reactions are written in the 
form of the system (I). 

To calculate the components of the thermal conductivity Xr, we make use of the 
heat balance of a chemically reacting mixture of gases [9]. The heat-flux component 
qr due to the chemical reactions is given by the following expression: 

~'H~W~. (2 )  

The vector W a is related to the diffusion velocity V a of component a by the 
known formula 

W~ - x~p V~ (a = l, 2 . . . . .  v). (3 )  
t~T 
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Taking account of the condition of equilibrium of the kilogram-mole fluxes 
[5-7], 

. . . . .  v), ( 4 )  
i = l  

we transform the right side of relation (2) in such a way that it will contain the 
heats of chemical reaction in explicit form: then the vector qr can be expressed 
by using only the kilogram-mole vectors of the fluxesW i of the dependent compo- 
nents : 

= - w,AH , ( 5 )  

where 

AH~= nigH h - H  i ( i=  l, 2 . . . . .  ~t). 
k=~+l 

(6) 

As will be shown later, under the conditions of the problem considered here the 
diffusion velocities Vi and the flux vectors W i are proportional to the gradient of 
the temperature T, and therefore the relation (2) can be reduced to the form 

q~ ---- - -  ;~ grad T.  ( 7 ) 

The coefficient of proportionality ~r between the vector quantities qr and grad T 
represents the component of the thermal conductivity due to the chemical reactions. 

The expressions for the vectors Wi can be obtained by using the equations for 
the chemical equilibrium of the reactions: 

f l  x ~  Km(T ) 
- -  v , =  - - 1  (i 1, 2, ~) ( 8 )  

and the Van't Hoff isochor equations: 

d l n K p , _  AH, ( i =  1, 2 . . . .  , ~), ( 9 )  
dT RT ~ 

where Kpi is the so-called equilibrium constant, which depends on temperature. Per- 
forming some simple transformations and eliminating the quantities Kpi(T) from these 
equations, on condition that grad p = 0, we have 

1 AHj 
n j ~  grad x t - -  - -  grad xj = - -  grad T 

t= 1 xz x j  R T  ~ 

(j = 1, 2 . . . . .  ~). 

(10) 

When we have no thermal diffusion and no pressure gradients, in the first approxima- 
tion of the Chapman-Enskog method the gradients of the kilogram-mole fractions of 
the components are connected with the flux vectors of the kilogram-mole components 
and the forces acting on the components by the well-known relation [9] 

E c ) RT (~ W - -xbW~)  = g r a d x ~ - -  nam~ ' p 
0=1 POa----b "~ b p,o ~ F o - -  b=l n~Fb 

(b~:-a) 

(a= I, 2 ..... v). (ii) 
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When there are no magnetic fields or other external influences on the neutral 
components, 

F==Z.eE ( a = l ,  2 . . . . .  v) ( 1 2 )  

(for an electron Z = -i, for a neutral particle Z = 0), and 

v 

 xo" (E ) RT - -  XbWa) = grad x.  nx~ Z~eE -+- - -  nbZbe E 

(b~a) 

(a = 1, 2 . . . . .  v). 

(13) 

For a quasineutral plasma the last term of formula (13) vanishes, and the for- 
mula can be written as 

(x~Wo -- xbW~) = grad x~ - -  Z~eE 
RT 

o=1 -~b  P 
(b:~a) 

( a =  1, 2, . . . ,  % 

(14) 

From this we obtain the following expressions for the gradients of the kilogram- 
mole fractions of the components: 

gradx~= ~ (x~Wi--x~W~) -k _ _ ( x ~ W k _ x ~ W o )  _~ nx~Z~e E ( a =  t, 2, . . . ,  v). ( 1 5 )  
i=1 ~ " ~ ~IPOh~ P 

(it-a) (koa) 

The right sides of the relations (15) differ from the expressions obtained by 
Butler and Brokaw [6] for the gradients of the concentrations of the components of 
chemically reacting neutral gaseous mixtures in that they include terms involving 
the electric field E. 

The value of E in the plasma is nonzero not only when there are external elec- 
tric fields, but also when there are no such external fields. Thus, the specific 
nature of the problem concerning the effect of chemical reactions on heat and mass 
transfer in an ionized gas (unlike the proglem solved by Butler and Brokaw for non- 
ionized gas mixtures) lies in the fact that the system we are considering is sub- 
ject to the forces F a. 

Substituting the expressions (15) found above for the gradients of the concen- 
trations of the components into relation (i0), we transform it to obtain 

AHj grad T =  AuWi+ nJznZze E E, 

RT2 i=i l= + P P 
( 1 6 )  

where 

Au = A n =  E E n / h '  - -  n~'n"~ + n / h ,  -i- ( 1 7 )  
l=~+11~=~+i POli~ x~ l ~ pOp~ xt P \@iz Oi l ,  POu 

( i , j = l ,  2 . . . . .  ,u; i ~ j ) ,  

A1 i =  RT  / x1~ : '~ n2 RT xp _k 2 V RT RT x b ~ x--njz--njznih ] + . - -  . - -  ' - - . - - -  
z ~=~,+~ z ;=1 ' ~ p O ~  x~ ~ ~ n~ T ( 1 8 )  
= = -1 l = ~ t  5 1  b=l P~'-~jb Xj 

(b..j) 

(] = I, 2 . . . . .  u). 
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By the law of conservation of charge, the last two terms on the right in the 
system (16) compensate each other, and the solution of the system can be written in 
the form 

1 
Wi = grad T.  

R T  2 

A i l A l ~  �9 . . A l a _ i A H 1 A i a + i  �9 . . A i ~  

A ~ i A v .  . : �9 A . . , i _ l h H 2 A ~ . , ~ + l  . . . A ~ ,  

A~i A~ 2 �9 �9 �9 A, , i_IAH.A.,~+ i . . .  A.~ 

A u A i = . .  �9 A l .  

A . I A ~ 2 .  . . A=~ 

A ~ i A ~ . .  . . A , ~  

(19) 

From this it can be seen that the vectors of the kilogram-mole fluxes W i are 
proportional to grad T. Substituting the values found for W i into relation (5), we 
obtain an expression for the components of the thermal conductivity ~r: 

AnAi~ - . .  Ai~AHI 

1 AHiAH ~ . . . AH~ 0 

R r  ~ [ A l l . . . A I ~  [ 

Formula (20), giving the value of the components of the thermal conductivity 
~r resulting from the chemical reactions in a plasma of arbitrary composition, is a 
generalization of the formula obtained by Brokaw and Butler [6] for nonionized gases. 
In obtaining the values of the Aij, we take account of the dissociation and ioniza- 
tion reactions [formulas (17) and (18)]. 

The diffusion fluxes of the dependent components can be calculated directly by 
means of formulas (19). The diffusion fluxes of the independent components can be 
found by using relations (4): 

A n . . .  Ai~M-/i I 

A ~ i  . �9 �9 A ~ A H ~  

W ~ - -  1 n i ~ . . . n ~  0 I g r a d T .  ( 2 1 )  
R T  z A n . . .  Ai~ 

�9 �9 �9 �9 

A~l �9 �9 �9 A ~  

It should be noted that relations (20), (19), and (21), giving the components 
of the thermal conductivity ir and the diffusion fluxes in the plasma, are valid 
both when there is an external electric field and when there is no such field. The 
dependence of the quantities considered above on the intensity of the electric field 
E is contained in the formulas in implicit form, since an electric field in the 
plasma affects its composition and the nature of the chemical reactions. 

The expressions obtained in the case of a multicomponent quasineutral plasma 
for the components of thermal conductivity ~r [formula (20)] and the vectors of the 
kilogram-mole fluxes of the components W i and Wk [formulas (19) and (21)] resulting 
from chemical reactions of various kinds can be used for calculating the thermal con- 
ductivity and the diffusion fluxes in an ionized gas in the case when the quasineu- 
trality condition is not satisfied. To show this, we note that the derivation of 
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the above-mentioned relations is based on the system of equations (16), which holds 
with sufficient accuracy even when the quasineutrality condition is not satisfied. 
In this case the last term of formula (13) cannot be omitted, and as a result the 
right sides of Eqs. (16) must be supplemented by the expressions 

2 (2 ) n n~Z~e njlm ~ - m j  E (]=1, 2 . . . . .  ~). 
~O a = l  I= ,uq-  1 

However, by the law of conservation of mass, in any j-th reaction the term in paren- 
theses in these expressions can be set equal to zero. The error resulting from this 
does not exceed 10-3% and arises from the fact that in the energy (mass) balance 
equation the thermal effect of the reaction has not been taken into account. 

2. Diffusion fluxes caused by chemical reactions in a nonuniformly heated plas- 
ma cause gradients of concentration of the components which are linear functions of 
the temperature gradient. The gradients of the concentrations of charged components 
are also affected by electric fields existing in the plasma; the concentration gra- 
dients will also be linear functions of the electric field intensity. 

Using formula (4) to eliminate from relations (15) the kilogram-mole vectors of 
the fluxes of the independent components W k (k = ~ + I, ~ + 2 .... , ~) and substi- 
tuting into them the expressions (19) for the kilogram-mole vectors of the fluxes of 
the dependent components Wi (i = I, 2 ..... ~), we obtain the values of the gradients 
of the kilogram-mole fractions of the dependent and independent components, respec- 
tively: 

,tt 

grad xj 1 
-- RT2. ':x AH; (--1)s ( \ ~'~ij 

p =  1 i=I  

( /=  1, 2 . . . . .  ~); 

- - - -  Z RT ') + v E RT ]gradT-> :zxiZje-~E (22)  
a=l J P 

gradxz R~A E ' ~  (--1)v+i AHpApi xz ~ nlz gradT+ E (23) 

( I = F +  1, F + 2  . . . . .  ~,), 

where A is the determinant in the denominator of the expression (19) for the W i and 
the Aji are its minors. 

If tbe quasineutrality condition is not satisfied, relations (22) and (23) must 
be changed: Their right sides must be supplemented by the terms 

respectively. 

3. If there is no external electric field, there is in the plasma an internal 
electric field caused by the separation of charges that takes place as a result of 
the unequal diffusion velocities of particles with different masses. 

In the stationary case, when there is no leakage of charge to the walls, the 
vector of the density of the electric current j is equal to zero and the value of 
the external electric field intensity is found from the following relation [I0]: 

*r v 

E = leT a=l b=l (24)  

~ ~ ZaMbDabxbZbe 
a = l  b=l 
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In this case the gradients of the concentrations of the plasma components are 
determined by the temperature gradients. 

Substituting the expressions (24) into the relations (14), we obtain a linear 
system of v equations in the v unknowns grad x b (b = I, 2 ..... v): 

~B~b grad xb == A~ (a = 1, 2 . . . . .  v), ( 2 5 )  
b = l  

where 

*v 

A ~ :  p - ~  (x~W~--xbW~) ( a =  1, 2, . . . ,  % ( 2 6 )  

+ 
ntcT ~ Z~MbD r 

Ba~ = 6~b-- x~Z~ ~=~ ( 2 7 )  

P 2 2 Z ~ Z a M a x a D ~  ~ 
r d=l  

( a , b ~ l ,  2 . . . . .  v). 

When a # b, B~b # Bba; if the particles of component are not charged, then Bab = 0 
when a # b and Bad = i. 

The solution of the system of equations (25) can be written in the form 

;2. ;j &2 : 
grad x~ ~ ( 2 8 )  BnB12 .  . . BI~, 

B,IBe . . . .  B2~ 

B ,nB ,~ .  . . B~v 

(a = 1, 2 . . . . .  v). 

If we denote the determinant in the denominator of the right side of relation (28) 
by the symbol A(v) and its minors by the symbols A~) and make use of the expres- 

sions (4), (22), and (23), we can transform formula (28) to the form 

grad x a grad T ( 2 9 )  
R T  2 

A n . . .  A l lAH1 

A~I . . . A ~ A H ~  

6 ~ . . .  6~,~ 0 
Al l  �9 �9 �9 Ax~ 

A~I �9 . �9 A ~  

(a = I, 2 . . . . .  v), 

where 

E [ R T  ~ l\,,+~A(~.)x 
i--b (v) }~ (v) v 1 - - ( - -1)  A~ /~b~ ~ - ~  

C~ i b 

pk-~A(V),A('~) 7 1 - - ( - -  ) lea I ba i 
(30) 

( i ~  1, 2, . . . ,  ,~; a = 1, 2, . . . ,  v). 
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Formula (29) will be true even if the quasineutrality condition is not satisfied. 
Only the form of the coefficients Bab is changed; instead of relations (27) we have 

ZdA/fbDab 
- - - - - - x a  Z~+ n~Zo , ( 3 1 )  

P 9 ~,=1 2]~Z~Z,M,x,D,, 
C=I d -':~ 

(a, b -  1, 2, , . . ,  ~,:~. 

From the above-determined concentration gradients grad Xa (a = !, 2 ..... u) 
we can calculate the mass fluxes MaWa in the plasma for the stationary case: 

M a W  ~ - -  P~ ~ MaMbD~bgradx b (a-- ! ,  2 . . . . .  v),  
pR2T ~ 

b = l  

(32) 

where the D~b are the effective coefficients of diffusion of the multicomponent mix- 

ture, given by the relations 

') I] 
,=, , L,-~_~ L ~ '~ 

�9 ~ (33) 

c = l  d=! 

(a, b ; :  1, 2 . . . . .  v). 

NOTATION 

p, pressure; T, absolute temperature; k, Bo!tzmann constant; R, universal gas 
constant; n, total concentration of particles; na, ma, and Ma, concentration of 
particles of component a, mass of a particle, and weight of a kilogram-mole of com- 
ponent a, respectively; p, average density of the plasma; e, absolute value of the 
elementary charge; Z a, charge of a particle of component a in units of e; V a, W a, 
and H a , diffusion velocity, vector of kilogram-mole flux, and enthalpy of 1 kilo- 
gram-mole of component a, respectively; Xa, kilogram-mole fraction of component a; 
X r and qr, components of thermal conductivity and heat flux resulting from the chem- 
ical reactions in the plasma; xk, X l, and X m, chemical symbols of independent com- 

ponents k, l, and m, respectively; xi, xJ, xP chemical symbols of reaction-product 
components i, j, and p, respectively; nik, stoichiometric coefficient of component 
k in reaction number i; AHi and Kpi, heat of reaction and equilibrium constant of 
reaction number i; nab, coefficieht of diffusion of a binary mixture of components 
a and b; Dab, mutual diffusion coefficient of a multicomponent gas mixture for com- 
ponents a and b; E, vector of electric field intensity in the plasma; Fa, force act- 
ing on a particle of component a. 
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INVESTIGATION OF THE IONIZATION RATE IN A LOW-TEMPERATURE 

NONEQUILIBRIUM PLASMA FLUX 

G. V. Babkin0 A. V. Potapov, 
V. V. Proshkin, and L. E. Tsvetkova 

UDC 533.9.07 

Results are presented of a determination of the ionization rate constants 
of a low-temperature lithium plasma on the basis of measuring the plasma 
parameters in a longitudinal discharge and of numerical processing of the 
experimental data. 

The flow of a low-temperature plasma in the channel of a magnetogasdynamic ac- 
celerator is characterized by an essential separation of the electron temperature 
from the heavy-particle temperature and by spoilage of the ionization equilibrium. 
Taking account of the ionization and recombination kinetics is a distinctive singu- 
larity of methods of computing plasma fluxes which yield the most confident infor- 
mation about the parameters of the working process. Progress in the development of 
such methods is slowed down because of the lack of information about the character- 
istics of the fundamental physical processes in a low-pressure nonequilibrium plas- 
ma and on the surface of the accelerator channel. Among these processes, a special 
place is occupied by volume ionization, since it is primarily one of the causes of 
ion generation. Evaluation of the volume ionization rate constant K in the formula 
for the change in charged particle concentration obtained in the ionization-recom- 
bination process 

One = Kn~ne -- 7n~, (he = hi), (i) 
Ot 

is a very complex problem whose correct solution requires the presence of reliable 
data over the sections of the elementary processes in addition to the production of 
a correct theoretical model. Since information about these quantities is limited 
and of inadequate confidence at this time, an experimental determination of K ac- 
quires special value. The accumulation of appropriate experimental material is also 
the foundation for a critical analysis of existing theoretical developments on the 
question under consideration and of the selection of the logical physical model of 
the process. It should be noted that even an estimate of the coefficients to order- 
of-magnitude accuracy acquires great practical value in connection with the lack of 
experimental data on the plasma ionization rate constants for many substances. 

A method of determining the coefficient K for ionized vapors of substances with 
a high boiling point, based on measurements of the partial profiles of the param- 
eters and on the integrated discharge characteristics with a subsequent special 
numerical processing of these data, is elucidated briefly in this paper. The meth- 
od is checked out in an example of a lithium plasma. 

A coaxial plasmatron of the type in [3-4] with up to I0 kW power (Fig. i) in- 
cluding a hollow tungsten cathode and a nozzle-anode separated by a boron carboni- 
tride(BCN) insulator was used to obtain the plasma flux. The plasma jet is bounded 
by the wall of a thin-walled (6 ~ 2 I0 -~ m) molybdenum tube 4 (~3.2 10 -2 m) 
heated by direct heat, and joined to the nozzle-anode 2 through the insulator 3. 
The main purpose of the cylindrical tube (L ~ 0.I m) is assurance of a steady plasma 
flow characterizing the preferred change in the parameters in the radial direction. 
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